Android as a Research Platform

Irwin Reyes

HHH 1@| INTERNATIONAL Berkele
: 1 | COMPUTER SCIENCE
twosix 1€)l INSTITUTE = y

Previous a researcher in the usable security group at ICSI/UCB

Now a lead research engineer at Two Six Labs working on DARPA Brandeis

This talk goes over work from UCB

owRn2e

n Facebook

Device & app history
Identity
Contacts/Calendar
Location

SMS

Phone

o
2
a
Q
=]
.
=

Photos/Media/Files
Camera/Microphone

Wi-Fi connection information

2 42

Device ID & call information

Install-time permissions

Accept all or don’t use the app at all. No obvious hints for why an app is
requesting a certain privilege. Can be overwhelming to end-users.

Android Permis

sions Remystified:

A Field Study on Contextual Integrity

= 4 > i ; >
Primal Wijesekera', Arjun Baokar?, Ashkan Hosseini®, Serge Egelman’,
David Wagner?, and Konstantin Beznosov!

' University of British Columbia, Vancouver, Canada,

{primal.beznosov}@ece.ubc.ca
2University of California, Berkeley, Berkeley, USA,

{arjunbaokar.ashkan} @ berkeley.edu, {egelman,daw} @cs.berkeley.edu

Abstract

We instrumented the Android platform to collect data re-
garding how often and under what circumstances smart
phone applications access protected resources regulated
by permissions. We performed a 36-person field study
1o explore the notion of “contextual integrity.” i.c., how
often applications access protected resources when users
are not expecting it. Based on our collection of 27M data
points and exit interviews with participants, we exam-
ine the situations in which users would like the ability to
AL least
80% of our participants would have preferred to prevent

deny applications access (o protected resources.

at least one permission request, and overall, they stated a
desire 1o block over a third of all requests. Our findings
pave the way for future systems 1o automatically deter-
mine the situations in which users would want to be con-
fronted with security decisions.

time the data is actually requested, it is not clear whether
or not users are being prompled aboult access 1o data that
they actually find concerning, or whether they would ap
prove of subsequent requests [15]

Nissenbaum posited that the reason why most privacy
models fail to predict violations is that they fail to con
sider contextual integrity [32]. That is, privacy violations
occur when personal information is used in ways that
defy users” expectations. We believe that this notion of
“privacy as contextual integrity” can be applied to smart
phone permission systems to yield more effective per-
missions by only prompting users when an application’s
access 1o sensitive data is likely to defy expectations. As
a first step down this path, we examined how applica-
tions are currently accessing this data and then examined
whether or not it complied with users” expectations

I joined the usable security group at UC Berkeley shortly after they published
results showing over 1 in 3 attempts to access sensitive data are unwanted by the
user under the install-time model.

This work motivated further research into better aligning permissions systems
with user privacy preferences.

. Allow Facebook to
access photos, media,
and files on your
device?

DENY ALLOW

Run-time permissions were introduced to Android in version 6 “Marshmallow,”
released in October 2015. Asks for permission on the first time an app tries to
access the protected resource (i.e., “ask-on-first-use” or AOFU).

An improvement to install-time permissions. This provides contextual clues to
the user: in this example, Facebook needs to read photos and videos for its
Camera Roll feature.

Uber begins background
collection of rider
location data

Kate Conger m

AOFU is an improvement, but only captures user privacy preferences in one
context: the first time a permission is exercised. It naively applies that decision
to all future contexts.

A user might be OK with Uber collecting their information in requesting a ride,
but not for continuous location tracking.

More User Control

Install-Time Ask On Ask On Ask On
Permissions First Use Some Uses? Every Use

Less Annoying

AOFU has shortcomings, so how can we improve it?

We can naively ask on every use. But unusable.

How about we ask on some uses? Let’s prototype evaluate it. This requires
modifying Android.

OBLIGATORY iOS DISCLAIMER

8800
@ 80286
29 -8

Why is a lot of mobile security/privacy research on Android? What about i0S?

Closed source: Can’t modify.

Encrypted app packages (.ipa files): Requires jailbroken phone to decrypt; lots
of hoops to jump through.

However, can still install root cert to MITM traffic; only mildly annoying to do.

Going forward, all methods and results in this talk are most relevant to Android.

App code

Platform code

Android apps operate at the top of the software stack: Apps call functions
exposed by the Android framework. For example, functions to manipulate on-
screen Ul elements or read sensitive user data (e.g., location, contact
information, etc.).

The Android framework is the highest level of abstraction, acting as a front-end
to the underlying software/hardware stack. This makes it easy to write one app
that works for a broad set of Android devices.

source t More ¥ Q LANGUAGE ~

Android unites the world! Use the open source Android operating system to power your device.

L5
Ay

&)

nterfaces and architecture Securing Android is ¢ >ntial Design compatible devices

Learn how the pieces fit together, from the Find out how the Android security program Offer a consistent experience with other

kernel to the HALs to updatable system works and learn how to implement the latest Android-powered devices for users and app

components features developers

https://source.android.com

Just as you can write Android apps, you can write your own fork of the Android

platform too.

10

Some cool things you can do up and down the stack:
* Framework: Custom permissions system

* Native libraries: Capture unencrypted TLS traffic
* HAL/HIDL: Get raw touchscreen input data

* Linux kernel: Log all file operations

Permissions system

Decrypt TLS traffic

Raw touchscreen inputs

All file operations

11

HIGH LEVEL DESCRIPTIONS AHEAD

I : X s

OBSERVER

“Ta g MRS 5 SR

WA e

https://source.android.com

Modifying, deploying, and testing Android source code has a lot of little quirks
and details associated with it. Will only go over how to get started with it. More
detailed documentation at source.android.com

My goal is to give you enough to be curious and ask questions, so feel free to
contact me. It took me a while to get comfortable with it myself.

Twitter: @irwinreyes.com
Email: irwin.reyes@twosixlabs.com OR ioreyes@icsi.berkeley.edu OR
email@irwinreyes.com

12

What you need to develop Android

& Linux build environment

g Ample hard drive space

i Multi-core CPU

Android smartphone
Lots of time and patience

To build Android, you’ll need:

1. Modern Linux build environment. Ubuntu Server 19 LTS generally works
out of the box. Might need to install gcc and openjdk.

2. Lots of hard disk space. The Android 9 source tree takes up about 150 GBs.

Compiling it for a phone will result in about 250 GBs of output.

3. Building Android can be done in parallel. More CPU cores = faster (but is
eventually disk-bound).

4. A smartphone compatible with the version of *Android you’re developing.
Nexus 5/5X/6P recommended for Android 6 through 8. Pixel series
recommended for Android 9 and 10.

Can develop using VMs, but VMs are slow and unreliable.

5. Building Android can take a long time. Debugging is done by using log
lines. No runtime debugger for the OS. Long turnaround between building
and installing on phones.

13

489, 442 80
1)5 80.95
23 days, 00:02:10

~25 minutes to build Android!

On a 40-core (80 logical) server with SSDs, building Android from scratch takes
about 25 minutes.

Luckily, you can do incremental builds afterwards.

14

The ‘repo’ tool

Git repositories on android

Name Description

The Android source tree is made up of several hundred Git repositories. The
“repo” tool manages those Git projects; initialize build environment, pull code,
check for outstanding changes, etc.

Each Git project roughly corresponds to a particular part of Android: device-
specific code, the Linux kernel, preinstalled apps, etc.

15

The ‘repo” tool

QP1A.191005.007.A1 android- Android 10 Pixel 2 XL, Pixel 2, Pixel XL, 2019-10-06
10.0.0_r5 Pixel
QP1A.191005.007 android- Android 10 Pixel 3a XL, Pixel 3a, Pixel 3 XL, 2019-10-05
10.0.0_r4 Pixel 3
QP1A.190711.020.C3 android- Android 10 Pixel 3a XL, Pixel 3a, Pixel 3 XL, 2019-09-05
10.0.0_r3 Pixel 3
QP1A.190711.020 android- Android 10 Pixel 3a XL, Pixel 3a, Pixel 3 XL, 2019-09-05
10.0.0_r2 Pixel 3, Pixel 2 XL, Pixel 2, Pixel
XL, Pixel
QP1A.190711.019 android- Android 10 Pixel 3a XL, Pixel 3a, Pixel 3 XL, 2019-09-05
10.0.0_1 Pixel 3, Pixel 2 XL, Pixel 2, Pixel
XL, Pixel

The ‘repo’ tool can also manage branches and tags. When first initializing the
build environment, you have to pick a tag corresponding to the version of
Android you want and what device you’re targeting.

As mentioned before, Pixel phones are highly recommended for modern
Android development. Older releases target all the Nexus phones.

16

Compiling Android in 7 steps

1. Get the ‘repo’ tool

https://source.android.com/setup/build/downloading

2. Create working directory and initialize to target branch

> mkdir aosp; cd aosp
> repo init -u https://android.googlesource.com/platform/manifest
-b

3. Download source tree
> repo sync -j$(nproc) \QD

Use the repo tool to select the Android version. Version tags available at
https://source.android.com/setup/start/build-numbers

17

Compiling Android in 7 steps

4. Set environment variables and functions

> source build/envsetup.sh

5. Use the "lunch’ command to select target device

> lunch

6. Compile Android

> make -j$(nproc) (l>

7. Get Android system image files and flash onto phone

> cp out/target/product/aosp_taimen-userdebug/*.img $DESTDIR
> cd $DESTDIR

> fastboot --disable-verification flash vbmeta vbmeta.img

> fastboot erase system; fastboot system system.img

Use the lunch tool to select the target device. Target device codenames available
at https://developers.google.com/android/images Taimen is the codname for the
Pixel 2XL.

Fastboot commands assume the phone bootloader has already been unlocked.
How to do this is left as an exercise to the reader.

Incremental builds only need the steps on this slide. 4 — 7 for a new session, and
only 6&7 for an existing session.

18

Android platform development tips
XRef

News

* 2018-08-11
* 2018-06-19
* 2017-12-22
* 2017-09-19
® 2016-12-22
* 2016-08-24
* 2016-01-08
® 2016-01-07
* 2015-10-07
* 2015-07-03
* 2015-03-13
® 2014-09-06
= 2014-07-14
= 2014-06-06
® 2014-03-25
® 2014-01-08
= 2013-11-01
013-10-

https://androidxref.com

The source tree is huge and hard to navigate. Android Xref is a really useful
resource for searching through the code.

19

Android platform development tips
XRefricsoornm

Home | History | Annotate Search only in /frameworks/base/

Size

Start looking in frameworks/base/

Most modifications will touch the frameworks/base project. This is where nearly
all API functions used by apps are implemented.

Useful terminology: Managers are app-space code that are front-ends to system-
space ManagerServices that actually talk to the underlying HAL.

For example, LocationManager (app-space) and LocationManagerService
(system-service implementation).

20

Cross Reference:|PermissionManagerService.java

XRefm 9.0.0_r3

e | History | A tate | Line# | Navigate | Download Search only in PermissionManagerService.java

Coincidentally, frameworks/base/ also has a PermissionManagerService.

“Manages all permissions and handles permissions related tasks.” Hmm...

21

we modified the PermissionManagerService
to use context and predict user preferences

Permission requests go through the PermissionManagerService.

22

Request for sensitive data

A

LocationManager

check(app, permission, manifest) > approve/deny

o
o
®

0]
E
S
O

L=

il

8

o

Normally, when an app requests sensitive data (e.g., location), it goes through
the corresponding manager.

The manager talks to the backing service, which requests a permission check.

The PermissionManagerService checks if the app has declared the appropriate
permission in the manifest and if the user has approved it under AOFU.
Approves the access if so.

23

Request for sensitive data

Context includes
Active app
Visibility of calling app

o
o
®

0]
E
S
O

L=

il

8

o

\\\ See Wijesekera (Oakland ‘17)
>~

check(app, permission, manifest, context) > approve/deny

We modified this flow to include context in the request, which is used by an
additional step called by the PermissionManagerService:

The context is used to predict user preferences based on a prebuilt bootstrapped
classifier model. It has a training phase for personalization. See Oakland paper
for more details.

24

Resource Access Notification

Google Play services has accessed
your location.

Given a choice, would you have
allowed or denied this access?

DENY ALLOW

In practice, this works very similarly to the existing AOFU model.

But the user is prompted when either the classifier is in training mode (i.e., when
device is first used) or when the classifier produces low-confidence results.

25

~ the classifier model can produce
incorrect or unwanted results sometimes

In practice though, the classifier isn’t perfect. It will still produce unwanted
outcomes sometimes.

26

users need to review and correct the
classifier’s results

How can users control this without being overwhelmed?

27

App permissions Contacts permissions

Calendar Calendar

9 o [

Calendar Chrome

Contacts Cloud Print
Location Contacts
Phone Docs
Drive

Fit

Gboard

(2
B
&
v
54
M

Gmail

E

Existing configuration tools for permissions are insufficient: They only offer
blanket on/off toggles, and they don’t give any information about the
circumstances in which permissions were exercised.

TurtleGuard: Helping Android Users Apply Contextual
Privacy Preferences

Lynn Tsai', Primal Wijesekera®, Joel Reardon', Irwin Reyes®, Jung-Wei Chen’,
Nathan Good*, Serge Egelman'*, and David Wagner
University of California, Berkeley, Berkeley, CA
{lynntsai,jreardon}@berkeley.edu, daw@cs.berkeley.edu
University of British Columbia, Vancouver, BC International Computer Science Institute, Berkeley, CA
primal@ece.ubc.ca {ioreyes,egelman)@icsi.berkeley.edu
‘Good Research, Inc., El Cerrito, CA
{iennifer,nathan}@goodresearch.com

Contextualizing Privacy Decisions
for Better Prediction (and Protection)

Primal Wijesekera', Joel Reardon’, Irwin Reyes’, Lynn Tsai', Jung-Wei Chen’,
Nathan Good®, David Wagner', Konstantin Beznosov', and Serge Egelman**
"University of British Columbia, Vancouver, BC
*University of Calgary, Calgary, AB
International Computer Science Institute, Berkeley, CA
‘University of California, Berkeley, CA
’Good Research, Berkeley, CA
{ primal.beznosov | @ece.ubce.ca, joel.reardon@ucalgary.ca, ioreyes@icsi.berkeley.edu,
lynntsai @berkeley.edu, {jennifer.nathan] @ goodrescarch.com, {daw.cgelman) @cs.berkeley.cdu

We developed a front-end configuration tool to support users in contextual
permissions systems and tested them.

el 00°%: @) 17:03 -anll 90° 23:51

€ Permissions Manager € Permissions Manager

WED

App Store Maps

Browser Music Player

Contacts ZvW
Dater

Downloads

Gamerz

Maps

Music Player

In the initial TurtleGuard study, we iterated through designs for these controls
and evaluated interactive mock-ups of them with 598 participants. 580 produced
complete responses, from which the results were drawn.

The final design looked something like this: Have a history of all recently
allowed/denied permissions, plus per-app settings.

TASK

Recent location access

Finding granted permissions

CORRECT

Control: 82.6%
Experimental: 82.5%

Control: 77.1%
Experimental: 80.8%

INCORRECT

Control: 17.4%
Experimental: 17.5%

Control: 22.9%
Experimental: 19.2%

Background location access

Restrict background access

Control: 37.6%
Experimental: 78.5%

Control: 27.5%
Experimental: 76.5%

Control: 62.4%
Experimental: 21.5%

Control: 72.5%
Experimental: 23.5%

In evaluating these designs, we split the participants into a control group
(presented with the stock settings) and an experimental group (presented with
TurtleGuard).

Four tasks:

1. Determine the app that most recently accessed location

2. Determine what permissions are granted to a given app

3. Determine if a given app could access location in the background
4

Prohibit app from accessing location in the background

Tasks 3 and 4 take context (app visibility) into account. TurtleGuard fares much
better.

are dynamic permissions and controls
actually usable on real mobile devices?

32

e 0 11:34 ' ®

ALLOWED DENIED APPS ALLOWED DENIED

g i

Google Play Store

>

Accounts

Google Play services

Google Play services for Instant Apps

The TurtleGuard study steps us through the design of the controls.

We eventually implemented them into the Android platform as part of the
system settings. We also implemented a live permissions model for this to
control.

33

field testing with real users

37 participants from Bay Area

1 week using custom Android

usagel/error logging and exit interviews

34

Median permission error rate

Median permission prompts

SecurityExceptions thrown

STOCK ANDROID

Under AOFU: 20.0%

Under AOFU: 15

DYNAMIC
PERMISSIONS

Classifier: 5.26%

Classifier: 13

Classifier: 3/day
(out of 2000 denials/day)

35

8% expressed annoyance at the prompts

70% surprised at the frequency of app
access to sensitive data

40% opened the permission manager
(“TurtleGuard”)

GET_ACCOUNTS permission most likely to
be restricted by users

READ_CONTACTS permission most likely
to be permitted by users

36

personal note: realistic user studies are
very time consuming!

37

we realized that instrumenting Android provides
useful information about app behaviors too

Because we owned the operating system, we had a very privileged view on how
apps interact with user data.

38

Flashlight

Version 8.6.0lmay request accessjto

0

Location

* access approximate location (network-
based)

* access precise location (GPS and network
based)

Phone

* read phone status and identity

?

Storage

« read the contents of your USB storage

Other

* have full network access

* Google Play billing service
* receive data from Internet
* view network connections
* view Wi-Fi connections

)

Apps are able to request access to private user data and sensitive device
resources.

In their app store listings (such as this one from the Google Play Store), apps
disclose their capabilities. However, these disclosures don’t tell the full story. Do
apps actually use these privileges? With whom do they share sensitive data?

39

DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies ; 2018 (3):63-83

Irwin Reyes*, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas Razaghpanah, Narseo

Vallina-Rodriguez, and Serge Egelman

“Won’t Somebody Think of the Children?”
Examining COPPA Compliance at Scale

Abstract: We present a scalable dynamic analysis frame-
work that allows for the automatic evaluation of the
privacy behaviors of Android apps. We use our system
to analyze mobile apps’ compliance with the Children’s
Online Privacy Protection Act (COPPA), one of the few
stringent privacy laws in the U.S. Based on our auto
mated analysis of 5,855 of the most popular free chil
dren’s apps, we found that a majority are potentially in
violation of COPPA, mainly due to their use of third-
party SDKs. While many of these SDKs offer conligu-
ration options to respect COPPA by disabling tracking
and behavioral advertising, our data suggest that a ma-
jority of apps cither do not make use of these options
or incorrectly propagate them across mediation SDKs.
Worse, we observed that 19% of children’s apps collect
identifiers or other personally identifiable information
(PH) via SDKs whose terms of service outright prohibit
their use in child-directed apps. Finally, we show that
efforts by Google to limit tracking through the use of a
resettable advertising 1D have had little suceess: of the

151 apps that share the rescttable ID with advertis-

ers, 66% transmit other, non-resettable, persistent iden-
tifiers as well, negating any intended privacy-preserving

properties of the advertising 1D.

1 Introduction

In the United States, there are few comprehensive pri-
vacy regulations, However, one notable exception is the
Children’s Online Privacy Protection Act (COPPA),
which regulates how mobile apps, games and websites
are allowed to collect and process personal information
from children under the age of 13 [22]. COPPA outright
prohibits certain data collection practices, and requires
parental consent for others. Of course, enforcement is a
painstaking process, as investigations generally rely on

manual examination of programs and websites to ob

serve violations [83]. In this paper, we apply our An
droid dynamic analysis framework to automate the pro
cess of detecting potential COPPA violations

Most current approaches to detecting suspicious ap-
plication activity on mobile platforms rely on static

analysis [e.g., 33, 41, 48, 93] or dynamic analysis [e.g.,

28). However, previous approaches fall short because

they either do not observe actual violations, and in

stead only detect when a program might contain viola

tive code (in the case of static analysis), or do not scale
(in the case of prior dynamic analysis approaches)

It bacoie € Lo bisile

We developed a fully automated platform to analyze how apps actually collect
and share sensitive data.

We instrumented the Android operating system and used advanced network
traffic monitoring tools. Apps are run and evaluated without any human
interaction. Technical details in the paper.

40

custom android for lumen app for
logging api calls network flow analysis

Custom Android 6 ROM for observing access to sensitive resources.

Lumen Privacy Monitor to see who gets that info.

41

dynamic analysis environment

. input event generator ; .
any Android app topexplore ﬂ?e app observed app behavior

\ ' ' ' [m
” Sy ‘ where it was shared

We run any Android app in this environment and observe its behavior.

Not enough to just launch the app. Solution: explore with monkey. It’s dumb!

Monkey did as well as undergrads 60% of the time in children’s games. Results
are a lower bound.

42

I Ty
I T

Our system observes when apps access and share personal information, as well
as unique persistent identifiers that can be used to track users over time and
across services.

43

US Children’s Online Privacy Protecti

ental consent

able security measures

COPPA is one of the few comprehensive privacy laws in the US. It covers online
services (like apps) that have users under 13 years of age.

Verifiable parental consent: Can take on the form of out-of-band methods like
credit card verification or a phone call. Our system is fully automated with no
direct human input, so observed data collection did not have consent.

Note that our analysis system is not specific to COPPA. It can be adapted to
other regulatory measures such as GDPR and California’s new online privacy
law.

44

P Google Play

& Apps

My apps

Games
Family

Editors' Choice

What apps does this law apply to? We looked at the “Family” category in the

Google Play Store.

Daydream

Art & Design

Auto & Vehicles
Beauty

Books & Reference
Business

Comics
Communication
Dating

Education

Home Top Charts

Games
Action
Adventure
Arcade
Board

Card
Casino
Casual
Educational

Music

Family

Ages 5 & Under
Ages 6-8

Ages 9 & Up
Action & Adventure
Brain Games
Creativity
Education

Music & Video

Pretend Play

45

Designed for Families [] optin to Designed for Families
Designed for Families is a developer program for apps and
games designed specifically for children and family

audiences. Learn More

Eligibility

g in the Designed for Fam

All apps participat gram must be relevant for children under the age of 13 pr

ility criteria bel

App content priate for children. Google Play reserves the right to reject or remove :

determined to be inappropriate for the D ed for Families program

https://play.google.com/about/families/designed-for-families/program-requirements/

Those are apps that have opted into the Designed for Families Program, or DFF
for short.

DFF is opt-in. Participation is the dev saying kids are in the target audience.
Google can reject or remove DFF apps not relevant to children.

DFF’s requires devs to represent their apps **and bundled services** are
COPPA compliant. For example, graphics, communications, analytics, and ads.

46

5,855 free “Designed for Families” apps

Apps collected between November 2016 and March 2018

Average 750K installs

Representing nearly 1900 developers

47

57% of “Designed for Families” apps
are in potential violation

POTENTIAL VIOLATION RATE (n=5,855)

{:C? Potentially non-compliant services
Failure to take security measures

The majority of our corpus was seen to be in potential violation of COPPA, in
that they:

- Accessing and collecting email addresses, phone numbers, and fine
geolocation

- Potentially enabling behavioral advertising through persistent identifiers

- Sharing user data and identifiers with SDKs that are themselves potentially
non-compliant

- Not using standard security technologies

Note that some apps were observed engaging in more than one of these
behaviors, so the percentages will add up to more than 57%.

48

potential violations often arise

from third-party services included with apps

We attributed most of these violations to various third-party services bundled
with apps.

These services allow developers to expedite production by offering drop-in
functionality, whether for graphics, communications, advertising, or analytics,
among others.

49

potential violations persist

due to platform providers not enforcing terms

We believe that these violations are prevalent because the gatekeepers in the
mobile app space are not enforcing their own terms meant to protect end-users.
(recall DFF requirements)

Google controls the Android operating system and the Play Store, which is the
primary app distribution channel for Android. They are in an excellent position
to conduct analysis similar to ours on all apps submitted to the Play Store, as
well as secure the operating system to prevent potential abuses.

50

Policy requirements

The (Jle Play Developer Program F y [requires that all
spdates and new apps uploaded to Google Play use the
jadvertising ID (when available on a device) in place of any other
Kdevice identifiers for any advertising purposes. You're responsible
or ensuring your apps are in compliance with policies regarding
ts usage, as well as all Play policies

Reset advertising ID

Apps using a persistent ID other than the advertising ID may
receive a policy violation warning via the publisher site or the email
address used to register the account. If you receive a warning, you
should ensure that any published APKs comply with the
advertising ID related guidance in the Developer Program Pol

If you are using a third-party ad SDK, please contact the SDK
maker to obtain a new version that complies with this new policy.

Opt out of Ads Personalization

Ads by Google

Enable debug logging for ads

For example, COPPA prohibits behavioral advertising for children. Behavioral
advertising uses persistent identifiers to build profiles of users by tracking

individuals over time and across services.

Google has recognized the privacy implications of persistent identifiers, and in
2013 introduced the resettable Android Advertising ID (AAID) to give users (or
parents) control over how advertisers track them. Since 2014, Google requires
developers and advertisers to use this in lieu of non-resettable device identifiers

like the IMEI and Wi-Fi MAC address.

51

-\
(\/((/@\)D

N2

39% share the AAID along another identifier,
negating its privacy preserving benefits

However, a large chunk of children’s apps were seen sharing the AAID with
another non-resettable identifier to the same destination, which defeats the
purpose of the AAID. Although Google requires the use of the AAID, non-
resettable identifiers remain available to apps.

52

AD PLATFORM VIOLATION OF IDENTIFIER POLICY

3%

We found adherence to this AAID-only policy to vary among third-party ad
networks. From nearly constant violation with Chartboost to nearly full
compliance with Doubleclick (which is a Google company).

Full table in paper.

53

C

19% share identifiers or personal information
with services not allowed in children’s apps

Not all third party services are appropriate for children, as claimed by those
services themselves. We found nearly 1 in 5 DFF apps sharing personal
information or identifiers with third-party services whose own terms of use
prohibit their deployment in children’s apps.

Recall that the apps we studied were opted into the Designed for Families
program, indicating that the developers intended to include children in their
apps’ audience. Still, these same developers were found including these
prohibited services.

54

not for children’s apps

E ironSource
+
supersonic

W\

INNERACTIVE

Presumably, these services prohibit their use in children’s apps because these

services may engage in non-COPPA-compliant data collection and processing.

55

ﬁ‘crashlytics

Developer further agrees it will not integrate
the Software into any Application or Beta
Application (i) with end users who Developer

has actual knowledge are under the age of 13,
or (ii) that may be deemed to be a “Web site or
online service directed to children” as defined
under the Children’s Online Privacy Protection
Act of 1998 (“COPPA”) and the regulations
promulgated thereunder.

Crashlytics is a crash reporting service that allows developers to receive usage
information about their apps in the wild. Crashlytics terms prohibit its use in
children’s apps.

56

Crashlytics

From Wikipedia, the free encyclopedia

Crashlytics is a Google-owned [Boston, Massachusetts-

based software company founded in May 2011 by

entrepreneurs Wayne Chang and Jeff Seibert.

Google owns Crashlytics, Android, and the Play Store. Google should be able to
detect when its own service is integrated with children's apps, then take
necessary steps to address that.

57

PRIVO

Privacy & Permission=TRUST

4 /SAEE)

.~ SEAL PROGRAM

'(FTrustArc INTEGRITY

the new TRUSTe

al
Children’s Advertising Review Unit* O

IKeepSafe

Potential COPPA violations are widespread, but the reality is regulatory agencies
like the FTC have finite enforcement capability. COPPA, however, allows for
industry self-regulation in the form of review and certification from designated
safe harbor certifying bodies.

industry self-regulation via safe harbors

has had no measurable positive effect

However, we found that apps certified by safe harbors fared no better than DFF
apps as a whole

59

In fact, they were in some cases were worse.

There’s a large body of economics research into adverse selection, in which bad
actors are the ones most likely to participate in positive signaling activities.

We suspect safe harbors have had the unintended consequence of allowing

potentially non-compliant apps to signal that they are indeed COPPA compliant.

60

industry and regulators react

Our study has had an impact in industry and enforcement since its release last
April.

I’ll close this presentation with an example of such impact.

61

Fun Kid Racing

Tiny Lab Racing Games Racing Action & Adventure * % % *

€ Everyone

developers, Tiny Lab
Productions, said in an email that its
apps are “directed for families,” and not

children, because “‘we see that

grownups and teens plays our games.”
| - CNET

In our study, we named Tiny Lab Productions’s games as a popular example of
the collection of personal information from children without verifiable consent.

Their game Fun Kid Racing has over 10M installs, and was seen collecting and
sharing geolocation data with advertisers. Of Tiny Lab Production’s 82 DFF
games, we observed this behavior in 81 of them.

In response to our findings, Tiny Lab Productions stated to CNET that their
games are not necessarily for children.

Tiny Lab Productions x

<« C @ tinylabproductions.com

/g “NYI-A\B GAMES

CHILDREN LOVE IT!

Fun Kid Racing is one of the best racing games for kids — this free
game features simple controls that children love and can quickly
master. Take control of a huge variety of vehicles and race them to
the finish line, optionally collect coins along the way, and do fun
stunts on the many varied environments.

The levels are designed specifically for children, ¢ nd will keep them
entertained tor hours!

63

We have identified that 2,667 apps are potentially incorrectly listed
as directed to “mixed audiences,” and “not primarily directed to
children,” corresponding to ~51% of Designed for Families (DFF)
apps from our original sample which are still listed on DFF.

Developers seem to have an incentive to miscategorize their apps
as “not primarily directed to children” so they will be able to
engage 1n defective “age gating,” thereby very likely causing
children under 13 to enter ages over 13, allowing COPPA-
prohibited behavioral advertising.

Email from our team to Google

We reported Tiny Labs to Google, along with our results identifying all other
DFF apps potentially violating COPPA and failing to meet Google’s own
standards for DFF apps

64

115. Inresponse, Google offered two primary rebuttals: (1) there was no mechanism to

detect and prevent the 1ssue “at scale™; and (2) more information was required on appropriate

“heuristics” to support the conclusion that the Tiny Lab apps at issue were child directed.

Google responded to us saying that there was no way to detect these issues at
scale, and that it was unclear that Tiny Labs was offering child-directed apps.

1) This was exactly the technology we developed and deployed in the course of
this research

65

Tiny Lab Productions x

<« C @ tinylabproductions.com

CHILDREN LOVE IT!

Fun Kid Racing is one of the best racing games for kids — this free
game features simple controls that children love and can quickly
master. Take control of a huge variety of vehicles and race them to
the finish line, optionally collect coins along the way, and do fun
stunts on the many varied environments.

The levels are designed specifically for children, and will keep them
entertained for hours!

2) Definitely *not* for kids

66

€he New HJork Times

How Game Apps That Captivate
Kids Have Been Collecting Their Data

By JENNIFER VALENTINO-DeVRIES, NATASHA SINGER, AARON KROLIK and MICHAEL H. KELLER SEPT. 12, 2018

https://www.nytimes.com/interactive/2018/09/12/technology/kids-apps-data-privacy-google-twitter.htmil

In September, the New Mexico Attorney General filed a suit, with Tiny Lab
Productions and Google as co-defendants for violating children’s privacy law.

A month later, Google appeared to reverse course: The company told
Mr. Abromaitis it had identified a Tiny Lab app that should be

designated for children. Google gave Tiny Lab a week to change that

app and any others like it. Tiny Lab labeled 10 of its apps for children
and used ad networks in them designed for children’s apps. Google
approved the updates but flagged more apps at the end of August, Mr.

Abromaitis said, so he made another round of changes.

Then, this week, after inquiries from The Times, Google terminated

Tiny Lab’s account and removed all of its apps from the Play store,

citing multiple policy violations.

https://www.nytimes.com/interactive/2018/09/12/technology/kids-apps-data-privacy-google-twitter.html

After facing scrutiny from the New York Times and the New Mexico AG’s
office, Google recently took a more aggressive stance towards Tiny Labs, taking
down their apps after Tiny Labs failed to address the various privacy issues we
identified in those products.

68

a bug that wasn’t

In the course of developing and refining this app testing infrastructure, we
encountered a “critical bug” that turned out to be something more interesting

69

apps without apps

location transmitting
permissions location data

One day as a sanity check, I asked our database of app behaviors, “give me all
that apps that sent location data but never declared permissions to access the
phone’s location.”

This intersection should be null.

70

1,325 apps

apps apps
without transmitting
location location
permissions data

Instead, the database turned up over 1300 apps that match this criteria.

I panicked for a second because

71

Despite the failures of permission systems
they serve an
At the very least, if an app is

permission, it access
resources protected by the permission.

From Reardon’s talk: apps that don’t hold appropriate permissions shouldn’t be
able to access those resources

72

The Android permissions system can be circumvented, often through the
permissions system itself

73

An Exploration of App:

University of Calgary
A\ppCensus, Inc.

Amit Elazari Bar On
U.C. Berkeley

Abstract

Modern smartphone platforms implement permission-based
models to protect access to sensitive data and system re
sources. However, apps can circumvent the permission model

and gain access to protected data without user consent by us.

ing both covert and side channels. Side channels present in
the implementation of the permission system allow apps to
access protected data and system resources without permis-
sion; whereas covert channels enable communication between
two colluding apps so that onc app can share its permission
protected data with another app lacking those permissions.

Both pose threats 1o user privacy

This “bug” resulted in a USENIX paper

Joel Reardon Alvaro Feal
IMDEA Networks Institute
Universidad Carlos Il de Madrid

Narsco Vallina-Rodriguez
IMDEA Networks Institute / ICSI
AppCensus, Inc.

50 Ways to Leak Your Data:
* Circumvention of the Android Permissions System

Primal Wijesckera
U.C. Berkeley / I1CSI

Serge Egelman
U.C. Berkeley / 1CSI
AppCensus, Inc.

is crucial to protect this information from unauthorized ac
cess. Android, the most-popular mobile phone operating sys

tem [75], implements a permission-based system to regulate

access to these sensitive resources by third-party applications
In this model, app developers must explicitly request permis
sion 10 access sensitive resources in their Android Manifest

file [5]. This model is supposed to

ve users control in decid-

ing which apps can access which resources and information;

in practice it does not address the issue completely [30,86]
The Android operating system sandboxes user-space apps
to prevent them from interacting arbitrarily with other run

ning apps. Android implements isolation by assigning each

74

app 1 o \

$sa20e |
< kuop X

“security mechanism

Example side channels: EXIF data; /proc/net

———————————

»w = B

75

$S9008
mMO[[e

security mechanism

A

Example covert channel: App 1 holds appropriate permissions, writes sensitive
data to shared storage, App 2 doesn’t have permissions but can read from storage

76

THANKS!

Z
Y

© Berkeley

https://irwinreyes.com

@irwinreyescom

irwin.reyes@twosixlabs.com

ioreyes@icsi.berkeley.edu

71

