
Previous a researcher in the usable security group at ICSI/UCB

Now a lead research engineer at Two Six Labs working on DARPA Brandeis

This talk goes over work from UCB

1

Install-time permissions

Accept all or don’t use the app at all. No obvious hints for why an app is

requesting a certain privilege. Can be overwhelming to end-users.

2

I joined the usable security group at UC Berkeley shortly after they published

results showing over 1 in 3 attempts to access sensitive data are unwanted by the

user under the install-time model.

This work motivated further research into better aligning permissions systems

with user privacy preferences.

3

Run-time permissions were introduced to Android in version 6 “Marshmallow,”

released in October 2015. Asks for permission on the first time an app tries to

access the protected resource (i.e., “ask-on-first-use” or AOFU).

An improvement to install-time permissions. This provides contextual clues to

the user: in this example, Facebook needs to read photos and videos for its

Camera Roll feature.

4

AOFU is an improvement, but only captures user privacy preferences in one

context: the first time a permission is exercised. It naively applies that decision

to all future contexts.

A user might be OK with Uber collecting their information in requesting a ride,

but not for continuous location tracking.

5

AOFU has shortcomings, so how can we improve it?

We can naively ask on every use. But unusable.

How about we ask on some uses? Let’s prototype evaluate it. This requires

modifying Android.

6

Why is a lot of mobile security/privacy research on Android? What about iOS?

Closed source: Can’t modify.

Encrypted app packages (.ipa files): Requires jailbroken phone to decrypt; lots

of hoops to jump through.

However, can still install root cert to MITM traffic; only mildly annoying to do.

7

Going forward, all methods and results in this talk are most relevant to Android.

8

Android apps operate at the top of the software stack: Apps call functions

exposed by the Android framework. For example, functions to manipulate on-

screen UI elements or read sensitive user data (e.g., location, contact

information, etc.).

The Android framework is the highest level of abstraction, acting as a front-end

to the underlying software/hardware stack. This makes it easy to write one app

that works for a broad set of Android devices.

9

Just as you can write Android apps, you can write your own fork of the Android

platform too.

10

Some cool things you can do up and down the stack:

• Framework: Custom permissions system

• Native libraries: Capture unencrypted TLS traffic

• HAL/HIDL: Get raw touchscreen input data

• Linux kernel: Log all file operations

11

Modifying, deploying, and testing Android source code has a lot of little quirks

and details associated with it. Will only go over how to get started with it. More

detailed documentation at source.android.com

My goal is to give you enough to be curious and ask questions, so feel free to

contact me. It took me a while to get comfortable with it myself.

Twitter: @irwinreyes.com

Email: irwin.reyes@twosixlabs.com OR ioreyes@icsi.berkeley.edu OR

email@irwinreyes.com

12

To build Android, you’ll need:

1. Modern Linux build environment. Ubuntu Server 19 LTS generally works

out of the box. Might need to install gcc and openjdk.

2. Lots of hard disk space. The Android 9 source tree takes up about 150 GBs.

Compiling it for a phone will result in about 250 GBs of output.

3. Building Android can be done in parallel. More CPU cores = faster (but is

eventually disk-bound).

4. A smartphone compatible with the version of `Android you’re developing.

Nexus 5/5X/6P recommended for Android 6 through 8. Pixel series

recommended for Android 9 and 10.

Can develop using VMs, but VMs are slow and unreliable.

5. Building Android can take a long time. Debugging is done by using log

lines. No runtime debugger for the OS. Long turnaround between building

and installing on phones.

13

On a 40-core (80 logical) server with SSDs, building Android from scratch takes

about 25 minutes.

Luckily, you can do incremental builds afterwards.

14

The Android source tree is made up of several hundred Git repositories. The

“repo” tool manages those Git projects; initialize build environment, pull code,

check for outstanding changes, etc.

Each Git project roughly corresponds to a particular part of Android: device-

specific code, the Linux kernel, preinstalled apps, etc.

15

The `repo` tool can also manage branches and tags. When first initializing the

build environment, you have to pick a tag corresponding to the version of

Android you want and what device you’re targeting.

As mentioned before, Pixel phones are highly recommended for modern

Android development. Older releases target all the Nexus phones.

16

Use the repo tool to select the Android version. Version tags available at

https://source.android.com/setup/start/build-numbers

17

Use the lunch tool to select the target device. Target device codenames available

at https://developers.google.com/android/images Taimen is the codname for the

Pixel 2XL.

Fastboot commands assume the phone bootloader has already been unlocked.

How to do this is left as an exercise to the reader.

Incremental builds only need the steps on this slide. 4 – 7 for a new session, and

only 6&7 for an existing session.

18

The source tree is huge and hard to navigate. Android Xref is a really useful

resource for searching through the code.

19

Most modifications will touch the frameworks/base project. This is where nearly

all API functions used by apps are implemented.

Useful terminology: Managers are app-space code that are front-ends to system-

space ManagerServices that actually talk to the underlying HAL.

For example, LocationManager (app-space) and LocationManagerService

(system-service implementation).

20

Coincidentally, frameworks/base/ also has a PermissionManagerService.

“Manages all permissions and handles permissions related tasks.” Hmm…

21

Permission requests go through the PermissionManagerService.

22

Normally, when an app requests sensitive data (e.g., location), it goes through

the corresponding manager.

The manager talks to the backing service, which requests a permission check.

The PermissionManagerService checks if the app has declared the appropriate

permission in the manifest and if the user has approved it under AOFU.

Approves the access if so.

23

We modified this flow to include context in the request, which is used by an

additional step called by the PermissionManagerService:

The context is used to predict user preferences based on a prebuilt bootstrapped

classifier model. It has a training phase for personalization. See Oakland paper

for more details.

24

In practice, this works very similarly to the existing AOFU model.

But the user is prompted when either the classifier is in training mode (i.e., when

device is first used) or when the classifier produces low-confidence results.

25

In practice though, the classifier isn’t perfect. It will still produce unwanted

outcomes sometimes.

26

How can users control this without being overwhelmed?

27

Existing configuration tools for permissions are insufficient: They only offer

blanket on/off toggles, and they don’t give any information about the

circumstances in which permissions were exercised.

28

We developed a front-end configuration tool to support users in contextual

permissions systems and tested them.

29

In the initial TurtleGuard study, we iterated through designs for these controls

and evaluated interactive mock-ups of them with 598 participants. 580 produced

complete responses, from which the results were drawn.

The final design looked something like this: Have a history of all recently

allowed/denied permissions, plus per-app settings.

30

In evaluating these designs, we split the participants into a control group

(presented with the stock settings) and an experimental group (presented with

TurtleGuard).

Four tasks:

1. Determine the app that most recently accessed location

2. Determine what permissions are granted to a given app

3. Determine if a given app could access location in the background

4. Prohibit app from accessing location in the background

Tasks 3 and 4 take context (app visibility) into account. TurtleGuard fares much

better.

31

32

The TurtleGuard study steps us through the design of the controls.

We eventually implemented them into the Android platform as part of the

system settings. We also implemented a live permissions model for this to

control.

33

34

35

36

37

Because we owned the operating system, we had a very privileged view on how

apps interact with user data.

38

Apps are able to request access to private user data and sensitive device

resources.

In their app store listings (such as this one from the Google Play Store), apps

disclose their capabilities. However, these disclosures don’t tell the full story. Do

apps actually use these privileges? With whom do they share sensitive data?

39

We developed a fully automated platform to analyze how apps actually collect

and share sensitive data.

We instrumented the Android operating system and used advanced network

traffic monitoring tools. Apps are run and evaluated without any human

interaction. Technical details in the paper.

40

Custom Android 6 ROM for observing access to sensitive resources.

Lumen Privacy Monitor to see who gets that info.

41

We run any Android app in this environment and observe its behavior.

Not enough to just launch the app. Solution: explore with monkey. It’s dumb!

Monkey did as well as undergrads 60% of the time in children’s games. Results

are a lower bound.

42

Our system observes when apps access and share personal information, as well

as unique persistent identifiers that can be used to track users over time and

across services.

43

COPPA is one of the few comprehensive privacy laws in the US. It covers online

services (like apps) that have users under 13 years of age.

Verifiable parental consent: Can take on the form of out-of-band methods like

credit card verification or a phone call. Our system is fully automated with no

direct human input, so observed data collection did not have consent.

Note that our analysis system is not specific to COPPA. It can be adapted to

other regulatory measures such as GDPR and California’s new online privacy

law.

44

What apps does this law apply to? We looked at the “Family” category in the

Google Play Store.

45

Those are apps that have opted into the Designed for Families Program, or DFF

for short.

DFF is opt-in. Participation is the dev saying kids are in the target audience.

Google can reject or remove DFF apps not relevant to children.

DFF’s requires devs to represent their apps **and bundled services** are

COPPA compliant. For example, graphics, communications, analytics, and ads.

46

Apps collected between November 2016 and March 2018

Average 750K installs

Representing nearly 1900 developers

47

The majority of our corpus was seen to be in potential violation of COPPA, in

that they:

- Accessing and collecting email addresses, phone numbers, and fine

geolocation

- Potentially enabling behavioral advertising through persistent identifiers

- Sharing user data and identifiers with SDKs that are themselves potentially

non-compliant

- Not using standard security technologies

Note that some apps were observed engaging in more than one of these

behaviors, so the percentages will add up to more than 57%.

48

We attributed most of these violations to various third-party services bundled

with apps.

These services allow developers to expedite production by offering drop-in

functionality, whether for graphics, communications, advertising, or analytics,

among others.

49

We believe that these violations are prevalent because the gatekeepers in the

mobile app space are not enforcing their own terms meant to protect end-users.

(recall DFF requirements)

Google controls the Android operating system and the Play Store, which is the

primary app distribution channel for Android. They are in an excellent position

to conduct analysis similar to ours on all apps submitted to the Play Store, as

well as secure the operating system to prevent potential abuses.

50

For example, COPPA prohibits behavioral advertising for children. Behavioral

advertising uses persistent identifiers to build profiles of users by tracking

individuals over time and across services.

Google has recognized the privacy implications of persistent identifiers, and in

2013 introduced the resettable Android Advertising ID (AAID) to give users (or

parents) control over how advertisers track them. Since 2014, Google requires

developers and advertisers to use this in lieu of non-resettable device identifiers

like the IMEI and Wi-Fi MAC address.

51

However, a large chunk of children’s apps were seen sharing the AAID with

another non-resettable identifier to the same destination, which defeats the

purpose of the AAID. Although Google requires the use of the AAID, non-

resettable identifiers remain available to apps.

52

We found adherence to this AAID-only policy to vary among third-party ad

networks. From nearly constant violation with Chartboost to nearly full

compliance with Doubleclick (which is a Google company).

Full table in paper.

53

Not all third party services are appropriate for children, as claimed by those

services themselves. We found nearly 1 in 5 DFF apps sharing personal

information or identifiers with third-party services whose own terms of use

prohibit their deployment in children’s apps.

Recall that the apps we studied were opted into the Designed for Families

program, indicating that the developers intended to include children in their

apps’ audience. Still, these same developers were found including these

prohibited services.

54

Presumably, these services prohibit their use in children’s apps because these

services may engage in non-COPPA-compliant data collection and processing.

55

Crashlytics is a crash reporting service that allows developers to receive usage

information about their apps in the wild. Crashlytics terms prohibit its use in

children’s apps.

56

Google owns Crashlytics, Android, and the Play Store. Google should be able to

detect when its own service is integrated with children's apps, then take

necessary steps to address that.

57

Potential COPPA violations are widespread, but the reality is regulatory agencies

like the FTC have finite enforcement capability. COPPA, however, allows for

industry self-regulation in the form of review and certification from designated

safe harbor certifying bodies.

58

However, we found that apps certified by safe harbors fared no better than DFF

apps as a whole

59

In fact, they were in some cases were worse.

There’s a large body of economics research into adverse selection, in which bad

actors are the ones most likely to participate in positive signaling activities.

We suspect safe harbors have had the unintended consequence of allowing

potentially non-compliant apps to signal that they are indeed COPPA compliant.

60

Our study has had an impact in industry and enforcement since its release last

April.

I’ll close this presentation with an example of such impact.

61

In our study, we named Tiny Lab Productions’s games as a popular example of

the collection of personal information from children without verifiable consent.

Their game Fun Kid Racing has over 10M installs, and was seen collecting and

sharing geolocation data with advertisers. Of Tiny Lab Production’s 82 DFF

games, we observed this behavior in 81 of them.

In response to our findings, Tiny Lab Productions stated to CNET that their

games are not necessarily for children.

62

63

We reported Tiny Labs to Google, along with our results identifying all other

DFF apps potentially violating COPPA and failing to meet Google’s own

standards for DFF apps

64

Google responded to us saying that there was no way to detect these issues at

scale, and that it was unclear that Tiny Labs was offering child-directed apps.

1) This was exactly the technology we developed and deployed in the course of

this research

65

2) Definitely *not* for kids

66

In September, the New Mexico Attorney General filed a suit, with Tiny Lab

Productions and Google as co-defendants for violating children’s privacy law.

67

After facing scrutiny from the New York Times and the New Mexico AG’s

office, Google recently took a more aggressive stance towards Tiny Labs, taking

down their apps after Tiny Labs failed to address the various privacy issues we

identified in those products.

68

In the course of developing and refining this app testing infrastructure, we

encountered a “critical bug” that turned out to be something more interesting

69

One day as a sanity check, I asked our database of app behaviors, “give me all

that apps that sent location data but never declared permissions to access the

phone’s location.”

This intersection should be null.

70

Instead, the database turned up over 1300 apps that match this criteria.

I panicked for a second because

71

From Reardon’s talk: apps that don’t hold appropriate permissions shouldn’t be

able to access those resources

72

The Android permissions system can be circumvented, often through the

permissions system itself

73

This “bug” resulted in a USENIX paper

74

Example side channels: EXIF data; /proc/net

75

Example covert channel: App 1 holds appropriate permissions, writes sensitive

data to shared storage, App 2 doesn’t have permissions but can read from storage

76

77

